Log-Linear System Combination Using Structured Support Vector Machines

نویسندگان

  • Jingzhou Yang
  • Anton Ragni
  • Mark J. F. Gales
  • Kate Knill
چکیده

Building high accuracy speech recognition systems with limited language resources is a highly challenging task. Although the use of multi-language data for acoustic models yields improvements, performance is often unsatisfactory with highly limited acoustic training data. In these situations, it is possible to consider using multiple well trained acoustic models and combine the system outputs together. Unfortunately, the computational cost associated with these approaches is high as multiple decoding runs are required. To address this problem, this paper examines schemes based on log-linear score combination. This has a number of advantages over standard combination schemes. Even with limited acoustic training data, it is possible to train, for example, phone-specific combination weights, allowing detailed relationships between the available well trained models to be obtained. To ensure robust parameter estimation, this paper casts log-linear score combination into a structured support vector machine (SSVM) learning task. This yields a method to train model parameters with good generalisation properties. Here the SSVM feature space is a set of scores from well-trained individual systems. The SSVM approach is compared to lattice rescoring and confusion network combination using language packs released within the IARPA Babel program.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Efficient multiple hyperparameter learning for log-linear models

In problems where input features have varying amounts of noise, using distinct regularization hyperparameters for different features provides an effective means of managing model complexity. While regularizers for neural networks and support vector machines often rely on multiple hyperparameters, regularizers for structured prediction models (used in tasks such as sequence labeling or parsing) ...

متن کامل

Structured Support Vector Machines for Speech Recognition

Discriminative training criteria and discriminative models are two ešective improvements for HMM-based speech recognition. is thesis proposed a structured support vector machine (SSVM) framework suitable for medium to large vocabulary continuous speech recognition. An important aspect of structured SVMs is the form of features. Several previously proposed features in the eld are summarized in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016